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Figure 3. VAE and classifier validation metrics on the CITE-seq dataset. Notice that validation cross-entropy inversely tracks the ground
truth matching metrics, and thus can be used as a proxy in practical settings where the ground truth is unknown. The same pattern does
not hold for the VAE (Yang et al., 2021), which we suspect is because reconstruction is largely irrelevant for matching.

Method MSE Trace
(Med (Q1, Q3)) (Med (Q1, Q3)) ⇥10�3

SCOT 0.0354 0.5964
VAE+SNN 0.0622 3.116

(0.0571, 0.0676) (2.818, 3.213)
VAE+OT 0.0324 7.733

(0.0316, 0.0350) (7.473, 7.794)
PS+SNN 0.0552 7.924

(0.0530, 0.0558) (7.569, 9.504)
PS+OT 0.0316 18.329

(0.0300, 0.0330) (17.068, 18.987)
Rand 0.0709 N/A

(0.0707, 0.0714)

Table 1. Results on synthetic image data. Metrics are computed on
a held out test set over 12 groups corresponding to interventions
on the latent position, with approximately 1700 observations per
group. A trace of 10 for example corresponds to a total weight of
10⇥ 10�3 ⇥ 1700 = 17 on the true matching, out of 1700.

use the standard cross-entropy loss to train our classifiers
for propensity score estimation. For other methods, we use
existing implementations with suggested default settings.

Matching Details Both SNN and OT use the Euclidean
distance function to determine neighbours and compute
the cost matrix, respectively. SCOT uses the correlation
distance by default, and we found that this resulted in better
performance than Euclidean distance. We use only a single
neighbour for SNN matching, which interestingly resulted
in the best performance. Both SCOT and OT solve the
entropic regularized OT, for these we use a regularization
parameter of 0.05.

Evaluation Metrics We report three evaluation metrics.

Method FOSCTTM Trace
(Median (Q1, Q3)) (Median (Q1, Q3))

SCOT 0.4596 0.0200
GLUE+SNN 0.4412 0.0362
GLUE+OT 0.5309 0.0323
VAE+SNN 0.3816 0.0612

(0.3760, 0.3822) (0.0588, 0.0634)
VAE+OT 0.3953 0.0814

(0.3912, 0.4045) (0.0777, 0.8895)
PS+SNN 0.3126 0.0941

(0.3121, 0.3160) (0.0880, 0.0989)
PS+OT 0.3049 0.1163

(0.3008, 0.3078) (0.1093, 0.1250)

Table 2. Results on CITE-seq data. Metrics are computed on a
held out test set averaged over a total of 45 cell types (groups) with
a varying amount of observations per group. As such, the average
trace can be difficult to interpret (for example, the maximum trace
is near 1, corresponding to a near-perfect matching within a group
with only 7 cells in the test set), but we remark that OT matching
on propensity scores outperforms the other methods within each
group as well as on average.

The trace metric computes the average mass that the match-
ing matrix places on the true matches (higher is better), and
FOSCTTM reports the Fraction Of Samples Closer Than the
True Match (FOSCTTM) ((Demetci et al., 2022), (Liu et al.,
2019)) (lower is better, 0.5 corresponds to random guessing).
For synthetic images where we know the ground true latent,
we report the MSE to the true latent after matching. Full
details of these metrics are given in Appendix D.1.

Modality Prediction We also consider one metric that ex-
amines whether matched samples are useful for downstream
tasks. For this, we chose the cross-modality prediction task
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Method MSE Trace
(Med (Q1, Q3)) (Med (Q1, Q3)) ⇥10�3

SCOT 0.0354 0.5964
VAE+SNN 0.0622 3.116

(0.0571, 0.0676) (2.818, 3.213)
VAE+OT 0.0324 7.733

(0.0316, 0.0350) (7.473, 7.794)
PS+SNN 0.0552 7.924

(0.0530, 0.0558) (7.569, 9.504)
PS+OT 0.0316 18.329

(0.0300, 0.0330) (17.068, 18.987)
Rand 0.0709 N/A

(0.0707, 0.0714)

Table 1. Results on synthetic image data. Metrics are computed on
a held out test set over 12 groups corresponding to interventions
on the latent position, with approximately 1700 observations per
group. A trace of 10 for example corresponds to a total weight of
10⇥ 10�3 ⇥ 1700 = 17 on the true matching, out of 1700.

use the standard cross-entropy loss to train our classifiers
for propensity score estimation. For other methods, we use
existing implementations with suggested default settings.

Matching Details Both SNN and OT use the Euclidean
distance function to determine neighbours and compute
the cost matrix, respectively. SCOT uses the correlation
distance by default, and we found that this resulted in better
performance than Euclidean distance. We use only a single
neighbour for SNN matching, which interestingly resulted
in the best performance. Both SCOT and OT solve the
entropic regularized OT, for these we use a regularization
parameter of 0.05.

Evaluation Metrics We report three evaluation metrics.
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PS+OT 0.3049 0.1163
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Table 2. Results on CITE-seq data. Metrics are computed on a
held out test set averaged over a total of 45 cell types (groups) with
a varying amount of observations per group. As such, the average
trace can be difficult to interpret (for example, the maximum trace
is near 1, corresponding to a near-perfect matching within a group
with only 7 cells in the test set), but we remark that OT matching
on propensity scores outperforms the other methods within each
group as well as on average.

The trace metric computes the average mass that the match-
ing matrix places on the true matches (higher is better), and
FOSCTTM reports the Fraction Of Samples Closer Than the
True Match (FOSCTTM) ((Demetci et al., 2022), (Liu et al.,
2019)) (lower is better, 0.5 corresponds to random guessing).
For synthetic images where we know the ground true latent,
we report the MSE to the true latent after matching. Full
details of these metrics are given in Appendix D.1.

Modality Prediction We also consider one metric that ex-
amines whether matched samples are useful for downstream
tasks. For this, we chose the cross-modality prediction task
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2 PROPENSITY SCORE MULTI-MODAL MATCHING

We consider multimodal settings where there exist two potential views, X(e,t) 2 X (e) from two
different modalities indexed by e 2 {1, 2} and experiment t that perturbs a shared latent state
of these observations. The observations will typically be in very different spaces: for example,
X (1,t) may be the space of images of cells under a microscope, and X (2,t) may be the space of gene
expression data. This process defines a jointly distributed random variable (X(1,t)

, X
(2,t)

, e, t), from
which we observe only a single modality, its index, and treatment assignment,{x(ei,ti)

i , ei, ti}ni=1
(we will always denote random variables by upper-case letters, and samples by their corresponding
lower-case letter). Our aim is to match or estimate the samples from the missing modality that
would correspond to the realization of the missing random variable. Importantly, we match within

treatment groups, and the treatment variable is only used to learn a common space in which to match.

We assume each modality arises from a common latent random variable Z as follows,

t ⇠ PT , Z
(t) | t ⇠ P

(t)
Z , U

(e) ⇠ P
(e)
U , U

(e)??Z,

t??U
(e)

, t 6??Z, X
(e,t) = f

(e)(Z(t)
, U

(e)), (1)

where t indexes the experimental perturbations, t 6 ??Z ensures that t has a non-trival affect on
the distribution of the latent variables, and we can take t = 0 to represent a base environment.
Note that the structural equations f

e are deterministic after accounting for the randomness in Z

and U : it represents purely the measurement process that captures the latent state. For example,
in a microscopy image, this would be the microscope and camera that maps a cell to pixels. The
modality specific noise variables, U (1)??U

(2), play the role of measurement noise and modality-
specific factors of variation: e.g. U (1), could describe the layout and orientation of cells on a slide.

Under this model, if Z were observable, an optimal matching can be constructed by simply matching
the modalities with the most similar Z. However, Z is latent, and inference on the model described
by Equation (1) is arguably more difficult than the matching problem itself due to theoretical diffi-
culties such as identifiability and disentangling Z from the modality-specific noise terms u(e).

Instead, we see that the interventions t provide an observable link between the modalities, thereby
revealing information about Z(t). Specifically, we use the propensity score with respect to t, which
we define as,

⇡(z) := P (t|Z = z) 2 [0, 1]T+1
, (2)

as a proxy for the latent Z. Now, although we cannot compute this directly as Z is latent, we
make the observation that if f (e) is injective for e = 1, 2, then we can compute the compute the
propensity score from each of the observed modalities, since it will be that ⇡(Z(t)) = ⇡(X(e,t)),
regardless of e = 1 or e = 2. Not only does the propensity score reveal shared information, classical
causal inference (Rubin, 1974) states that it captures all information shared between the latent and
treatment, and does so minimally, in terms of having minimum dimension and entropy. We collect
these observations into the following proposition.
Proposition 2.1. In the model described by Equation (1), further assume that f

(e)
are injective for

e = 1, 2. Then, the propensity scores in either modality is equal to the propensity score given by

Z
(t)

, i.e., ⇡(X(1,t)) = ⇡(X(2,t)) = ⇡(Z(t)) as random variables. This implies

I(t, Z(t) | ⇡(Z(t))) = I(t, Z(t) | ⇡(X(t))) = 0, (3)

for each t, where I is the mutual information. Furthermore, any other function b(Z(t)) satisfying

I(t, Z(t) | b(Z(t))) = 0 is such that ⇡(Z(t)) = f(b(Z(t))).

The proof can be found in the Appendix. The above shows that computing the propensity score on
either modality is equivalent to computing it on the unobserved shared latent, which captures all
the shared information observable in t. The final statement implies that it is of minimal dimension
and entropy, and thus it discards the modality-specific information that may be counterproductive to
matching.

Number of Perturbations Note that point-wise equality of the propensity score ⇡(z1) = ⇡(z2)
does not necessarily imply equality of the latents z1 = z2, due to potential non-injectivity. In
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Figure 3. VAE and classifier validation metrics on the CITE-seq dataset. Notice that validation cross-entropy inversely tracks the ground
truth matching metrics, and thus can be used as a proxy in practical settings where the ground truth is unknown. The same pattern does
not hold for the VAE (Yang et al., 2021), which we suspect is because reconstruction is largely irrelevant for matching.

Method MSE Trace
(Med (Q1, Q3)) (Med (Q1, Q3)) ⇥10�3

SCOT 0.0354 0.5964
VAE+SNN 0.0622 3.116

(0.0571, 0.0676) (2.818, 3.213)
VAE+OT 0.0324 7.733

(0.0316, 0.0350) (7.473, 7.794)
PS+SNN 0.0552 7.924

(0.0530, 0.0558) (7.569, 9.504)
PS+OT 0.0316 18.329

(0.0300, 0.0330) (17.068, 18.987)
Rand 0.0709 N/A
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Table 1. Results on synthetic image data. Metrics are computed on
a held out test set over 12 groups corresponding to interventions
on the latent position, with approximately 1700 observations per
group. A trace of 10 for example corresponds to a total weight of
10⇥ 10�3 ⇥ 1700 = 17 on the true matching, out of 1700.

use the standard cross-entropy loss to train our classifiers
for propensity score estimation. For other methods, we use
existing implementations with suggested default settings.

Matching Details Both SNN and OT use the Euclidean
distance function to determine neighbours and compute
the cost matrix, respectively. SCOT uses the correlation
distance by default, and we found that this resulted in better
performance than Euclidean distance. We use only a single
neighbour for SNN matching, which interestingly resulted
in the best performance. Both SCOT and OT solve the
entropic regularized OT, for these we use a regularization
parameter of 0.05.

Evaluation Metrics We report three evaluation metrics.

Method FOSCTTM Trace
(Median (Q1, Q3)) (Median (Q1, Q3))

SCOT 0.4596 0.0200
GLUE+SNN 0.4412 0.0362
GLUE+OT 0.5309 0.0323
VAE+SNN 0.3816 0.0612

(0.3760, 0.3822) (0.0588, 0.0634)
VAE+OT 0.3953 0.0814

(0.3912, 0.4045) (0.0777, 0.8895)
PS+SNN 0.3126 0.0941

(0.3121, 0.3160) (0.0880, 0.0989)
PS+OT 0.3049 0.1163

(0.3008, 0.3078) (0.1093, 0.1250)

Table 2. Results on CITE-seq data. Metrics are computed on a
held out test set averaged over a total of 45 cell types (groups) with
a varying amount of observations per group. As such, the average
trace can be difficult to interpret (for example, the maximum trace
is near 1, corresponding to a near-perfect matching within a group
with only 7 cells in the test set), but we remark that OT matching
on propensity scores outperforms the other methods within each
group as well as on average.

The trace metric computes the average mass that the match-
ing matrix places on the true matches (higher is better), and
FOSCTTM reports the Fraction Of Samples Closer Than the
True Match (FOSCTTM) ((Demetci et al., 2022), (Liu et al.,
2019)) (lower is better, 0.5 corresponds to random guessing).
For synthetic images where we know the ground true latent,
we report the MSE to the true latent after matching. Full
details of these metrics are given in Appendix D.1.

Modality Prediction We also consider one metric that ex-
amines whether matched samples are useful for downstream
tasks. For this, we chose the cross-modality prediction task
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Method FOSCTTM Trace
(Median (Q1, Q3)) (Median (Q1, Q3))

SCOT 0.4596 0.0200
GLUE+SNN 0.4412 0.0362
GLUE+OT 0.5309 0.0323
VAE+SNN 0.3816 0.0612

(0.3760, 0.3822) (0.0588, 0.0634)
VAE+OT 0.3953 0.0814

(0.3912, 0.4045) (0.0777, 0.8895)
PS+SNN 0.3126 0.0941

(0.3121, 0.3160) (0.0880, 0.0989)
PS+OT 0.3049 0.1163

(0.3008, 0.3078) (0.1093, 0.1250)

Table 1: Results on CITE-seq data. Metrics
are computed on a held out test set averaged
over a total of 45 cell types (groups) with
a varying amount of observations per group.
As such, the average trace can be difficult to
interpret (for example, the maximum trace
is near 1, corresponding to a near-perfect
matching within a group with only 7 cells
in the test set), but OT matching on propen-
sity scores outperformed the other methods
within each group as well as on average.

Method R
2 (MSE) R

2 (Unbiased)1

(Med (Q1, Q3)) (Med (Q1, Q3))
Rand 0.1383 0.1727

(0.1372, 0.1402) (0.1701, 0.1731)
VAE+OT 0.1493 0.1142

(0.1179, 0.1724) (0.0786, 0.1594)
PS+OT 0.2174 0.2331

(0.2062, 0.2228) (0.2069, 0.2504)
True Pairs 0.2243 N/A2

(0.2234, 0.2257)

Table 2: Modality prediction results on
CITE-seq data. Entries represent R2 com-
puted on a held-out test set consisting of
ground-truth pairs, which is computed as 1�
MSE(x̂, x)/MSE(x̄, x), where x̂ are the pre-
dicted protein levels, and x̄ is the mean value
of the validation set. Note random sampling,
especially with the unbiased gradient loss,
achieves a positive R

2 against x̄ because it
samples randomly within t, which results in
learning group-level statistics.

Results We checkpoint the classifier and VAEs at the lowest validation loss and report their metrics
on a held out test set over 10 random seeds. Note that this does not necessarily select the embedding
model that exhibits optimal matching, but instead the best model to select without validating against
ground truth matching metrics, see Figure 3. scGLUE is trained according to the public implemen-
tation, which uses learning rate reduction and early stopping strategies. SCOT is a non-iterative
approach and thus we directly report its results.

We found that OT matching on propensity scores consistently outperforms other methods on all
metrics, typically followed by SNN matching on propensity scores, or OT matching on VAE em-
beddings. Furthermore, both the VAE and propensity score, which leverage experimental label
information, tend to perform better. This suggests that using the propensity score as embeddings
for matching, and using OT to perform the final matching both independently improve matching
performance. Curiously, SCOT performs well on the MSE metric for image data, but only places
slightly above random in the trace metric. This indicates that it matches scenes with similar latent
coordinates, without placing any significant weight on the exact ground truth. This suggests that
exact matches may not be necessary for a method to be useful for downstream tasks.

Surprisingly, using the propensity score embeddings with OT matching appears to improve general-
ization in the modality prediction task (Table 2), when using the unbiased MSE over a model trained
on ground truth pairings (indeed, we observed that the ground truth model had a lower training loss,
but higher test loss). This reveals an unexpected benefit of (soft) matching: we can sample from
the conditional to minimize the loss Equation (9), which, with a suitable M , results in improved
generalization compared to the naive MSE. This hinges strongly on the quality of M—the M re-
sulting from the VAE embeddings results in worse generalization, and in practice the quality of the
matching, at least in absolute terms, remains hidden.

5 CONCLUSION

This work presents a simple algorithm for aligning unpaired data from different modalities. The
method is both very general—only requiring a classifier to be trained on each modality—and highly
effective for matching, which we show both theoretically and empirically. As a downstream task,
we demonstrate the effectiveness of the resulting matchings for cross modality prediction, which
leads to better generalization than the ground truth matching on the dataset we evaluated. We sus-
pect that this improved generalization is the result of implicitly enforcing invariance to modality
specific information, but more work is needed to evaluate the conditions under which this improved
generalization occurs.
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regularization term, resulting in a soft matching, that ensures smoothness and uniqueness, and can
be solved efficiently using Sinkhorn’s algorithm. Entropic OT takes the following form:

min
M

n1X

i

n2X

j

CijMij � �H(M), Mij � 0, M1 = p1, M
>1 = p2, (8)

where H(M) = �
P

i,j Mij log(Mij), the entropy of the joint distribution implied by M . This
approach regularizes towards a higher entropy solution, which has been shown to have statistical
benefits (Genevay et al., 2018), but nonetheless for small enough � serves as a computationally
appealing approximation to exact OT.

Cross-modality prediction Given a matching matrix M , we can interpret this as the probability
that each sample, i, from modality (1) is matched to sample j in modality (2); that is Mi,j =

P (x(2)
j |x(1)

i ). As a downstream task, and as an evaluation metric for M , we can use this matching
to estimate a cross-modal prediction model, f✓, that maps from modality (2) to (1) by minimizing
the following loss,

L(✓) :=
X

i

(x(1)
i �Mif✓(x

(2)
j ))2. (9)

However, this requires evaluating f✓ for all n2 examples from modality (2) for each of the n1 exam-
ples in modality (1). Of course, we can avoid this cost with stochastic gradient descent by sampling
from modality (2) via Mi· for each training example (1), but to get an unbiased estimate of r✓L,
we need two samples from modality (2) for each sample from modality (1),

rL(✓) ⇡� 2
⇣
x
(1)
i � f✓(ẋ

(2)
j )

⌘
r✓f✓(ẍ

(2)
j ) ẋ

(2)
j , ẍ

(2)
j ⇠ P (x(2)

j |x(1)
i ). (10)

By taking two samples as in equation (10), we get an unbiased estimator of rL(✓), whereas a single
sample would have resulted in optimizing an upper-bound on equation (9); for details, see Hartford
et al. (2017) where a similar issue arises in the gradient of their causal effect estimator.

4 EXPERIMENTS

We evaluate our proposed methodology on two datasets. The first is a synthetic interventional image
dataset generated satisfying the assumptions of Equation (1). The second is a real-world single-cell
CITE-seq data obtained from the NeurIPS 2021 Multimodal single-cell data integration competition
(Lance et al., 2022), which provides a ground truth matching by allowing for a small number of cell
surface proteins to be measured simultaneously to RNA sequencing. Note the CITE-seq dataset is
not interventional—we use the cell type as the classification target t instead. All details are made
available in the Appendix. In both cases the ground truth matching is known to make evaluation
possible, but hidden during training.

Evaluation Metrics We report three evaluation metrics. The trace metric computes the average
mass that the matching matrix places on the true matches (higher is better), and FOSCTTM reports
the Fraction Of Samples Closer Than the True Match (FOSCTTM) ((Demetci et al., 2022), (Liu
et al., 2019)) (lower is better, 0.5 corresponds to random guessing). For synthetic images where we
know the ground true latent, we report the MSE to the true latent after matching. Full details of
these metrics are given in Appendix F.4.

Modality Prediction We also consider one metric that examines whether matched samples are
useful for downstream tasks. For this, we chose the cross-modality prediction task of predicting
protein levels from RNA expression in the CITE-seq dataset. To do this, we train a supervised
learning model (in our case, a 2-layer MLP with either MSE loss or the unbiased gradients loss in
Section 3) using samples generated by different matching matrices M . As baselines, we also train
on pairs from the ground truth matching (Mii = 1) and random sampling (Mij = 1/n). In view of
the performance observed in Table 3 and Table 1, we only considered M resulting from matching
with OT using the propensity score and VAE embeddings.

1This refers to training the predictor with the unbiased MSE (Equation (9)). The evaluation is still using R2

as defined by the standard MSE.
2The standard and unbiased MSE are equivalent in this case.
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regularization term, resulting in a soft matching, that ensures smoothness and uniqueness, and can
be solved efficiently using Sinkhorn’s algorithm. Entropic OT takes the following form:

min
M

n1X

i

n2X

j

CijMij � �H(M), Mij � 0, M1 = p1, M
>1 = p2, (8)

where H(M) = �
P

i,j Mij log(Mij), the entropy of the joint distribution implied by M . This
approach regularizes towards a higher entropy solution, which has been shown to have statistical
benefits (Genevay et al., 2018), but nonetheless for small enough � serves as a computationally
appealing approximation to exact OT.

Cross-modality prediction Given a matching matrix M , we can interpret this as the probability
that each sample, i, from modality (1) is matched to sample j in modality (2); that is Mi,j =

P (x(2)
j |x(1)

i ). As a downstream task, and as an evaluation metric for M , we can use this matching
to estimate a cross-modal prediction model, f✓, that maps from modality (2) to (1) by minimizing
the following loss,

L(✓) :=
X

i

(x(1)
i �Mif✓(x

(2)
j ))2. (9)

However, this requires evaluating f✓ for all n2 examples from modality (2) for each of the n1 exam-
ples in modality (1). Of course, we can avoid this cost with stochastic gradient descent by sampling
from modality (2) via Mi· for each training example (1), but to get an unbiased estimate of r✓L,
we need two samples from modality (2) for each sample from modality (1),

rL(✓) ⇡� 2
⇣
x
(1)
i � f✓(ẋ

(2)
j )

⌘
r✓f✓(ẍ

(2)
j ) ẋ

(2)
j , ẍ

(2)
j ⇠ P (x(2)

j |x(1)
i ). (10)

By taking two samples as in equation (10), we get an unbiased estimator of rL(✓), whereas a single
sample would have resulted in optimizing an upper-bound on equation (9); for details, see Hartford
et al. (2017) where a similar issue arises in the gradient of their causal effect estimator.

4 EXPERIMENTS

We evaluate our proposed methodology on two datasets. The first is a synthetic interventional image
dataset generated satisfying the assumptions of Equation (1). The second is a real-world single-cell
CITE-seq data obtained from the NeurIPS 2021 Multimodal single-cell data integration competition
(Lance et al., 2022), which provides a ground truth matching by allowing for a small number of cell
surface proteins to be measured simultaneously to RNA sequencing. Note the CITE-seq dataset is
not interventional—we use the cell type as the classification target t instead. All details are made
available in the Appendix. In both cases the ground truth matching is known to make evaluation
possible, but hidden during training.

Evaluation Metrics We report three evaluation metrics. The trace metric computes the average
mass that the matching matrix places on the true matches (higher is better), and FOSCTTM reports
the Fraction Of Samples Closer Than the True Match (FOSCTTM) ((Demetci et al., 2022), (Liu
et al., 2019)) (lower is better, 0.5 corresponds to random guessing). For synthetic images where we
know the ground true latent, we report the MSE to the true latent after matching. Full details of
these metrics are given in Appendix F.4.

Modality Prediction We also consider one metric that examines whether matched samples are
useful for downstream tasks. For this, we chose the cross-modality prediction task of predicting
protein levels from RNA expression in the CITE-seq dataset. To do this, we train a supervised
learning model (in our case, a 2-layer MLP with either MSE loss or the unbiased gradients loss in
Section 3) using samples generated by different matching matrices M . As baselines, we also train
on pairs from the ground truth matching (Mii = 1) and random sampling (Mij = 1/n). In view of
the performance observed in Table 3 and Table 1, we only considered M resulting from matching
with OT using the propensity score and VAE embeddings.

1This refers to training the predictor with the unbiased MSE (Equation (9)). The evaluation is still using R2

as defined by the standard MSE.
2The standard and unbiased MSE are equivalent in this case.
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