Triangular Monotonic Generative Models Can Perform Causal Discovery

Johnny Xi, Sebastian Gonzalez and Benjamin Bloem-Reddy

Department of Statistics, UBC

Triangular Monotonic (TMI) Maps
$T(x)=\left[\begin{array}{cll}T_{1}\left(x_{1}\right) & \text { Monotone } \\ T_{2}\left(x_{1}, x_{2}\right) & \text { Monotone in } x_{2}, ~ \\ \vdots & \text { for all } x_{1} \\ T_{d}\left(x_{1}, \ldots, x_{d}\right)\end{array}\right] \quad$,
$\begin{array}{cc}P_{\epsilon}=\mathscr{U}[0,1]^{d} & T_{\#} P_{x}=P_{\epsilon} \text {, full support } \\ \downarrow & \downarrow\end{array}$
T_{i} is the cond. CDF $T_{i}\left(x_{\leq i}\right)=F_{X_{i} \mid X_{<i}}\left(x_{i} \mid x_{<i}\right)$
Sparsity of T_{i} implies conditional independence $F_{X_{i} \mid X_{i}}=F_{X\left|X_{i}\right| X_{j}} \Longleftrightarrow X_{i} \Perp X_{j} \mid X_{<i} \backslash X_{j} \star$

Still holds if P_{ϵ} is merely independent

CI-based Structure Learning

Given DAG \mathscr{G} and faithful P_{x} :

Only id. up to MEC: $X_{1} \not \not \nVdash X_{2}$

Use a causal generative model (SCM) for P_{x} : $x_{i}=f\left(x_{p a(i)}, \epsilon_{i}\right)$, parents from \mathscr{G}

Asymmetries in f can refine the MEC

TMI Maps for Causal Discovery

TMI maps combine structure learning + SCM!

1) Permuting TMI maps can identify the MEC:

Theorem (Raskutti + Uhler 2018):

The sparsest permutation of X, in terms of the number of Cl's discovered in the sequence \star, identifies the MEC of \mathscr{G}.
I.e., finding π with the sparsest Jacobian gives adjacency matrix $J_{T, \pi} \stackrel{\text { Markov }}{\sim} \mathscr{G}$

Novelty: don't need to assume an underlying SCM to do structure learning with Jacobian
2) TMIs can also fit SCMs:

If $x_{i}=f\left(x_{p a(i)}, \epsilon_{i}\right)$ monotone in ϵ_{i}, can write
$\left(x_{1}, \ldots, x_{d}\right)=T\left(\epsilon_{1}, \ldots, \epsilon_{d}\right) \stackrel{\text { (in practice, fit the abductive }}{T^{-1}, \text { which is also TMI) }}$
TMIs infer latent variables ($\boldsymbol{*}$) if order correct

Incorrect order refines the MEC:
(1) 2) : true SCM not in model class!

$$
\hat{T}\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
\hat{T}_{1}\left(x_{1}\right) \\
\hat{T}_{2}\left(x_{1}, x_{2}\right)
\end{array}\right]=\left(\hat{\epsilon}_{1}, \hat{\epsilon}_{2}\right) \Longrightarrow X_{1} \not 丬 \hat{\epsilon}_{2}
$$

Novelty: TMI SCMs are less restrictive than the additive noise models typically used for $C D$

Computational Challenges Ahead Hard computational problems:

- Search over permutations
- How to threshold for sparsity
- Doing it for each permutation 장

Mean Jacobian for true π^{*}

Mean Jacobian for incorrect π_{r}

