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T(x) =

T1(x1)
T2(x1, x2)

⋮
Td(x1, …, xd)

Triangular Monotonic (TMI) Maps
Monotone

Monotone in  
for all 

x2,
x1

Pϵ = 𝒰[0,1]d , full supportT#Px = Pϵ

 is the cond. CDF   Ti Ti(x≤i) = FXi∣X<i
(xi ∣ x<i)

CI-based Structure Learning
Given DAG  and faithful  : 𝒢 Px

 (d-sep)I1 ⊥⊥𝒢 I2 ∣ I3

 (CI)⟺ X1 ⊥⊥ X2 ∣ X3
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Recover  with   
using CI signatures

𝒢 {Xn} ∼ Px

1 2

1 2
Only id. up to MEC: X1 ⊥⊥ X2

, parents from xi = f(xpa(i), ϵi) 𝒢
Use a causal generative model (SCM) for :Px

Asymmetries in  can refine the MEC f

Sparsity of  implies conditional independenceTi

FXi∣X<i
= FX∣X<i∖Xj

⟺ Xi ⊥⊥ Xj ∣ X<i∖Xj

Still holds if  is merely independent Pϵ

TMI Maps for Causal Discovery
TMI maps combine structure learning + SCM!

1) Permuting TMI maps can identify the MEC:

Theorem (Raskutti + Uhler 2018): 
The sparsest permutation of , in terms of 
the number of CI’s discovered in the 
sequence , identifies the MEC of .

X

𝒢

I.e., finding  with the sparsest Jacobian gives 
adjacency matrix  

π
JT,π

Markov∼ 𝒢

Novelty: don’t need to assume an underlying 
SCM to do structure learning with Jacobian

2) TMIs can also fit SCMs:

If  monotone in , can writexi = f(xpa(i), ϵi) ϵi

(x1, …, xd) = T(ϵ1, …, ϵd)

TMIs infer latent variables ( ) if order correct

Novelty: TMI SCMs are less restrictive than 
the additive noise models typically used for CD

1 2 : ̂T(x1, x2) = T−1(x1, x2) = (ϵ1, ϵ2)

(in practice, fit the abductive 
, which is also TMI)T−1

1 2 : true SCM not in model class!

̂T(x1, x2) = [
̂T1(x1)

̂T2(x1, x2)] = ( ̂ϵ1, ̂ϵ2) ⟹ X1 ⊥⊥ ̂ϵ2

Incorrect order refines the MEC:

Computational Challenges Ahead
Hard computational problems: 

• Search over permutations 🫠 
• How to threshold for sparsity 😵💫 
• Doing it for each permutation 😵

Raskutti, G., & Uhler, C. (2018). Learning directed acyclic graph 
models based on sparsest permutations. Stat, 7(1).

⟹ X1 ⊥⊥ ϵ2

Mean Jacobian for true  π*
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Clear sparsity pattern

# non-sparse = 4 
(maximal)

Mean Jacobian for incorrect  πr

# non-sparse = 5 

  should be dense, but unclear in practice!


