
• Sources of Indeterminacy: We 
provide an abstract theoretical 
framework characterizing the 
sources of indeterminacies in 
generic generative models, 
unifying existing strategies (Q1).  

• Applying the Framework: We 
characterize indeterminacies in 
some specific instances, and 
propose sufficient conditions for 
strong identifiability (Q2).  

• Task Identifiability: We further 
motivate the study of identifiable 
generative models via the 
identifiability of downstream 
tasks, and provide sufficient 
conditions for identifiable task 
outputs (Q3).  
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Problem Setting Applying the Framework 

Mathematical setting:

e.g., scaling and permutation indeterminacies  
are “as good as it gets” in ICA designs. 

observations w/  
implied dist. 

model design, i.e., 
parameter space

Prototypical example: rotational indeterminacy 
yield equivalent Gaussian generative models.

Auxiliary Information: Heterogenous 
environments           with shared generator:

Fixed Latent Distributions 
A novel insight via our framework: fixing 
latent distributions enable strongly 
identifiable generative models. 

Triangular Monotone Mappings 
Triangular monotone (TM) maps are 
mappings between . 

Monotone in      

Monotone in      

Uniquely specifies CDF transformations. 
Implications within our framework:  
• With fixed distributions, TM generators 

are strongly identifiable.  
• TM generators with independent latents 

are identifiable in the ICA sense.    

Previous works reduce indeterminacy 
equivalence classes to some degree:

• Specific model design/parameter space

• Auxiliary information, multi-view

Q2. Is strong identifiability attainable?

Questions… Answers/Contributions

Q1. Do these strategies generalize? 

Q3. If not, what is “good enough” for 
practical uses? 

Strategies to achieve this include: 

Model Designs Indeterminacies
Non-linear, Exponential 

family
Affine + pointwise non-

linearity [Khe2020]

Non-linear, conformal Permutation + scaling + 
offset [Hyv1999, Buc2022].

Linear, non-Gaussian Permutation + scaling 
[Com1994]. 

Sources of Indeterminacy
It is well-known that measure-preserving 
transformations result in indeterminacy. 
The key message in our main theorem is 
that they are the only possibility.

Theorem 2.2 (Cartoon version): 
All indeterminacies can be 
characterized as certain latent 
transformations                          :

Injective

(1) Indeterminacies must be formed by pushing 
and pulling along possible generators.

Task Identifiability

Two distinct sources of indeterminacy in 
parameter space: 

• Contribution from generator class. 

• Contribution from latent distribution class.

e.g.,

Indeterminacy must be linear, and preserve 
non-Gaussians: permutation + scalings!

This phenomenon generalizes to all generative models in the specified form! 

(2) Indeterminacies must be measure transports 
between possible latent distributions.

must satisfy (2) for each          !  

Our framework explains the success of:

Multiple Views: Heterogenous views 
generated by         with shared latents: 

must satisfy (1) for each        !  

Measure-preserving automorphisms
Can combine with auxiliary information: 
iVAE [Khem20] with ExpFam priors fixed a-
priori are strongly identifiable.

Latent variables suffer some degree of 
indeterminacy in most generative models.

Are weakly identifiable models still useful?

It depends on our task    .

Tasks using sparsity
Tasks using norms

Task outputs constant over 
indeterminacy “orbits” 

Strong ID: OK for any 
task.

Causal Discovery using nonlinear ICA 
Independence testing of observed and 
latent variables inferred via ICA [Mon2020].  

Typical ICA ID: arbitrary component-wise 
reparametrizations, no additional mixing. 

Independence preserving → task is 
identifiable, results are consistent. 
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