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Abstract

Parameter and latent variable identifiability in variational autoencoders have re-
ceived considerable attention recently, due to their empirical success in learning
joint probabilities of complex data and their representations. Concurrently, mod-
eling using multiple environments has been suggested for robust causal reasoning.
We uncover additional theoretical benefits of multiple environments in the form
of a strong identifiability result for a general class of additive noise models with
(latent) covariate shift. We propose a novel representation learning algorithm that
combines empirical Bayes and variational autoencoders, designed for identifiabil-
ity of unique representations without compromising representative power, using
multiple environments as a crucial technical and practical tool.

1 Introduction

Variational autoencoders (VAE) aim to learn the joint distribution of a latent code X and an obser-
vation Y in a Bayesian deep latent variable model, scaling to modern applications using variational
inference. Theoretical analysis of Bayesian models typically assume that data are observed as inde-
pendently and identically distributed (i.i.d.) random variables, and that future observations should
also be predicted under this setting. However, it may be the case that data are only i.i.d. when
conditioned on additional data, such as the physical environment or viewing angles of images.

Observing data from changing environments and learning invariant predictors has been used as a
tool in causal discovery and robust inference [24, 17, 1]. Here, we assume that data may arise from
a number of environments, indexed by c, differing by a latent covariate shift [22]. Specifically, we
assume that the conditional distribution P (Y |X) is invariant to shifts in X , but that the prior on X
differs across environments, thus changing the respective joint distributions in each environment. We
use covariate shift as a technical tool to obtain an identifiability result for a general class of additive
noise models when applied in multiple environments, which we believe can be a valuable tool for
causal representation learning [21]. Compared to past work, our contributions uncover a trade-
off between model flexibility and identifiability in terms of the number of environments on which
distributional assumptions are made. Crucially, we are able to characterize the exact source of non-
identifiability in these models. We propose minimal assumptions to obtain strong identifiability of
functional parameters in a general setting, and unique representations in a representation learning
setting.

We examine the identifiability of additive noise models:
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X ∼ pX
ϵ ∼ gϵ

Y = f(X) + ϵ . (1)

This describes a VAE if X is unobserved, i.e., latent, and of much lower dimension. VAEs are the
main application in this paper, and so f will be referred to as the decoder. However, our results
are directly applicable to the identification of additive noise causal mechanisms, where each envi-
ronment represents a soft intervention on all parent nodes [18]. Note that this perspective of our
work transcends latent variable modeling or VAEs—the X’s may be observed, and not necessarily
lower dimensional, and environments may represent different experimental settings. In this setting,
our work says that if we are able to sample from the “right” interventional SCMs, or experimental
settings, then a causal mechanism may be correctly identified.

In general, many decoder functions f can result in the same marginal distribution for Y , and so the
model is unidentifiable and thus non-unique latent codes can give rise to the same observed data.
The non-identifiability makes it difficult to establish statistical properties such as consistency, and
the non-uniqueness stands in the way of interpreting latent dimensions separately and meaningfully
(sometimes referred to as disentanglement [12]). A number of works, beginning with [8], have
developed extensions of VAE to obtain various identifiability claims [9, 10, 15]. The problem of
identifiabilty has also received some attention recently for deep (nonlinear) latent variable models
in general [4, 6, 19], and more classically for ICA [3, 5].

Those familiar with factor analysis might recognize the VAE as resembling a non-linear, multi-
environment form of factor analysis. Within our notation, a type of factor analysis model (with a
single environment) is recovered when gϵ and pX are both zero-mean Normal, and f is a linear
transformation represented by a matrix F . A well-known case of non-identifiability in this model
arises from the fact that an orthonormal transformation on X leaves its prior invariant [11]. If R
is an orthonormal matrix, then setting X∗ = RX and F ∗ = FR⊤ results in an identical marginal
density, but F ∗ ̸= F .

The non-identifiability in a standard VAE follows a similar logic—there are many non-linear trans-
formations that leave the prior invariant, even if it is not zero-mean Normal. Such a non-linearity
can be undone in the same way as the factor model by changing f , thus violating identifiability [8].
While factor analysis typically avoids this problem by seeking an optimal rotation (according to a
specific A) of its factors (see [13] for a modern VAE example), it is much more difficult to optimize
over the general class of pX -preserving measure automorphisms.

Our main contribution is a novel identifiablility analysis of the model described by Equation 1, for-
mulated in terms of measure automorphisms. Specifically,A is said to be a ν-measure automorphism
if ν ◦ A = ν ◦ A−1 = ν [2]. The following Theorem motivates the rest of our analysis and model
formulation.

Theorem 1.1 (Informal Statement of Theorem A.1.5). Two injective decoders fa and fb resulting
in the same marginal distribution for Y in a VAE must be related as

fa(x) = fb(A(x)) ,

where A is a measure automorphism of the prior measures on the latent space.

This Theorem formalizes the idea that VAE non-identifiability is not only a result of invariant prior
transformations [8], but in fact is completely characterized by such a transformation on the latent
space. Furthermore, we see that the level of non-identification is exactly related to the class of prior-
preserving measure automorphisms; if its only element is the identity, then Theorem 1.1 says that f
is uniquely identified point-wise.

By fixing a subset of priors in multiple environments, we obtain strong identifiability results by con-
straining A to be of a simple form and applying the above Theorem. As a practical implementation
of these ideas, Sections 2 and 3 use an appropriate set of transformed exponential family priors to
obtain a simple characterization of A. Our model is otherwise a straightforward application of envi-
ronment invariance to VAEs, precisely targeting strong latent variable identifiability while retaining
the maximum amount of flexibility.
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2 A Multiple VAE Model

Let (Rd, B(Rd)) be the measurable space representing the latent variables (X), and (Rm, B(Rm))
be the measurable space representing the observations (Y ). Though our main application, i.e., repre-
sentation learning, assumes d << m, our analysis is fully general. Let Y be a subset of Rm, and F
be a family of injective, Borel-measurable functions with common image Y . We will refer to F as
the family of decoder functions. All probability measures on either space will be assumed to have a
density with respect to the Lebesgue measure.

2.1 Model Details

Suppose the existence of distinct environments, each of which carries a different marginal distri-
bution for Y under the model. Denote the prior density of X and marginal density of Y under
environment c to be p(c)X and p(c)Y respectively. We assume that the environment of an observation
is observed deterministically (i.e., there is no need to infer it), and so each environment may be
analyzed separately of others.

For each environment, we assume that the data arises independently as in a VAE,

for c ∈ I

X ∼ p
(c)
X

ϵ ∼ gϵ
Y = f(X) + ϵ . (2)

Here, I is an arbitrary index set, which is not necessarily finite. gϵ is the noise distribution denoted
by its density, and f ∈ F is the shared decoder. Note this also implies the conditional density, which
is the same across environments,

pf (y|x) = gϵ(y − f(x)) . (3)

Hence, the differences between environments is driven entirely by the prior distributions, while the
decoder and noise terms are shared. To improve the expressiveness of our priors, we will also assume
that p(c)X are partially parametrized by a function, also fixed across all environments. Details of this
parametrization are given in Section 2.3, but it is useful to think of a normalizing flow for now [16].
Given an environment c and mild conditions on gϵ, the maringal density of Y is given by

p
(c)
Y (y) =

∫
gϵ(y − f(x))dP

(c)
X . (4)

2.2 Model Identifiability

Identifiability of model parameters is often seen as a prerequisite to statistical inference. Roughly,
observed data should not be explained equivalently well under different parameter values of the
model. If two parameters lead to an identical fit, then the optimization landscape may have multiple
modes, and the parameters fit can be difficult to interpret. Furthermore, any notion of strong con-
sistency in the limit of infinite sample size is lost. Formally speaking, let θi be a pair of parameter
values and denote the marginal density for environment c under the model parametrized by θi to be
p
(c)
Y,θi

. The model is said to be strongly identifiable if

p
(c)
Y,θa

= p
(c)
Y,θb

for all c =⇒ θa = θb . (5)

In practice, we will say that the model is strongly identified if the parametrization is unique for
all observed environments—that is, we replace “for all c” by “for all observed c” above. This is a
stronger statement since it weakens the hypothesis, i.e., “for all c” =⇒ “for all observed c”. Note
that we treat θi as functional parameters for identifiability, and θa = θb means that, for example,
fa = fb almost everywhere on their domain. In practice, they may be parametrized by the weights
and biases of some neural networks, or as normalizing flows.

Though technically distinct to parameter identifiability, we also refer to the latent code as being
strongly identified if a unique code X can be associated to an observation Y for any given pY,θ. In

3



the context of causal representation learning, this means that we may trace our observations back
to semantically meaningful causes, and justifies intervening on latent codes. Recent work identifies
these codes up to affine transformations [8]. However, even if identified up to just a permutation
and translation, each “cause” can still take on infinitely many values for the same observational
distribution. It is unclear how interventions, especially hard interventions, should be interpreted
under this type of identifiability.

2.3 Fixed Subset of Transformed Exponential Family Priors

We will now describe the key structural assumption required for our model to be strongly identifiable.
Suppose a subset of environment priors are from the same exponential family parametrized by the
natural parameter η,

p
(c)
base(x; ηc) = m(x) exp(η⊤c T (x)− a(ηc)) . (6)

Here, T, h and a are fixed across the subset. An example of such a parametrization is simply a
Normal with fixed covariance, where the natural parameter is the mean vector. We refer to these as
“fixed environments”, noting that the remaining prior distributions can be arbitrary.

For a strictly more expressive model while maintaining strong identifiability of latent codes, we
propose to transform the fixed priors jointly. To do this, we refer to Equation 6 as the “base” priors.
By imposing a single transformation for every fixed environment, we are able to retain the shared
structure required for identifiability. Specifically, let H be a family of smoothly invertible (C1)
functions from RD to RD. The prior for each fixed environment is then transformed by h ∈ H,

p
(c)
X (x) = pbase(h

−1(x); ηc)|det
∂h

∂x
(x)|−1 . (7)

Note that the priors only differ by their base natural parameter. In other words, each fixed envi-
ronment has its own distinct starting point, and then proceeds on a shared trajectory. As part of
our inference scheme, the priors are optimized by selecting the optimal h that maximizes the total
marginal likelihood over all environments.

With this formulation, our probabilistic model is learnable via the functional parameters f and h.
The fixed base priors are considered to be hyperparameters—this is analogous to fixing a family of
base distributions, such as spherical Gaussians with environment-specific means. Note that the fixed
priors are crucial for strong identifiability; we weaken this at the cost of a weaker identifiability
result in the next section. Although the variational approximation of the posterior on X (i.e., the
decoder q) is also learned simultaneously to f and h, we consider it external to our model and hence
do not consider it for identifiability purposes.

We now state our main Theorem, a general result on the identifiability of f , h, and X assuming
conditions only on a subset of base prior densities.
Theorem 2.1. In the model described by Equation 2, let θa = (fa, ha) and θb = (fb, hb) denote
two parametrizations and suppose that gϵ has a strictly positive characteristic function. Suppose a
subset of K + 1 environments follow the prior described by Equations 6-7, and:

1. m(x), shared for each base prior, is strictly positive.

2. K of the base priors have linearly independent natural parameter vectors, where K is the
dimension of the base natural parameters and sufficient statistic.

Then if p(c)Y,θa = p
(c)
Y,θb

for each observed c, we have T (h−1
a (f−1

a (y))) = T (h−1
b (f−1

b (y))) almost
everywhere in †. If T is injective in at least one dimension, then fa(ha(x)) = fb(hb(x)) almost
everywhere. If ha and hb are the identity, i.e., the priors are simply the base exponential families,
then the decoder f is strongly identifiable.

If T is designed to be injective in at least one dimension, the result in the original parametrization
means that x is a strongly identified base encoding, and x1 = h1(x), x2 = h2(x) are both acceptable
encodings of y. From this perspective, x is recoverable by inverting h1 or h2

x = h−1
1 (x1) = h−1

2 (x2) (8)
This perspective is highly practical. We can obtain a base encoding x which uniquely identifies the
data. Meanwhile, we retain the ability to generate accurate samples from the model by passing it
through h, despite h(x) not being strongly identified.

4



2.3.1 Alternative Parametrization

Combined with Equations 6 and 7, our model for the K + 1 fixed environments can also be written
as

for c ∈ {c1, . . . , cK+1}

X ∼ p
(c)
base

ϵ ∼ gϵ
Y = f(h(X)) + ϵ , (9)

which is an equivalent model to Equation 2 for these environments, except that the decoder is now
f ◦ h, with h being a C1 function from the latent space to itself. Note that Theorem 2.1 can be
equivalently understood as strong identifiability of the reparametrized f ◦ h, which also implies
strong identification of X .

2.4 Fully Flexible Priors

Previously, we fixed a subset of priors to obtain strong identifiability. In this section, we give results
that recover Theorem 1 of [8], with a novel interpretation under our framework. First, we state a
generalized version of Theorem 1.1. The complete technical story can be found in Appendix A.2.
Theorem 2.2 (Informal Statement of Theorem A.2.1). Two injective decoders fa and fb with priors
νa and νb resulting in the same marginal distribution for Y in an additive noise model must be
related as

fa(x) = fb(A(x)) ,

where A transports between the priors νa and νb, and the process is invertible using A−1.

This Theorem says that, for any decoder-prior pair in a VAE that matches in the marginal distribu-
tion of Y , there must exist a uniquely determined, invertible transport map between the two priors.
Furthermore, the indeterminacy in the decoder, or equivalently in the latent code, is exactly this
mapping. Of course, if νa = νb, we recover Theorem 1.1. Importantly, the identity map cannot
transport between two distinct priors, and so Theorem 2.2 also implies that strong identifiability of
the decoder, or the latent code, is impossible when none of the environment priors are fixed. The
minimal constraints to obtain strong identifiability is hence exactly fixing the right priors such that
their shared automorphisms can only be the identity function (our main results are a specific instance
of this).

We apply Theorem 2.2 to recover the identifiability result in [8]. Suppose that our model
(i.e., the marginals of Y ) has exponential family priors as in Equation 6 parametrized by θ =
(f,m, T, (ηc)c∈I), where f,m, T are functional parameters, and ηc is a vector arbitrarily depending
on c (e.g., a neural network mapping environment metadata to η).
Theorem 2.3. In the model with a subset of K + 1 environments with priors parametrized by
θa = (fa,ma, Ta, {η(a)c }c∈I), θb = (fb,mb, Tb, {η(b)c }c∈I), suppose that gϵ has a strictly positive
characteristic function and assume the following conditions on the priors:

1. m(a)(x),m(b)(x) are strictly positive.

2. The sameK base priors for θa and θb have linearly independent natural parameter vectors,
where K is the dimension of the base natural parameters and sufficient statistic.

Then if P (c)
Y,θa

= P
(c)
Y,θb

for each observed c, we have

Tb(A(x)) = L⊤Ta(x) + d λ− a.e. on Rd , (10)

where A(x) = f−1
b (fa(x)), L is an invertible K ×K matrix and d is some K-dimensional vector.

Note taking y = f−1
a (x) recovers Theorem 1 of [8]. To help interpret this result, view A as the

transformation on the latent space that connects two possible encodings. Then, as perceived by the
respective sufficient statistics, this transformation is affine. As an example, consider the case where
we fit Gaussian priors with fixed covariance, i.e., we fix Ta(x) = Tb(x) = x. Then, the theorem says
that A(x) = L⊤x+d, i.e., any two encodings must be related by an invertible affine transformation.
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Algorithm 1: Two-Step EB-VAE Optimization.

Input :Data (yobs), hyperparameters, and initializations f (0), q(0), h(0), ψ(0)
c , an index set of

anchor environments †c ⊂ I , with | †c | = K + 1.
Output :Functional parameters f , q, h, ψc.

1 Unsupervised representation learning c→ ηc for c ∈ †c, such that span({ηc}) = RK . while
not converged do

2 Sample minibatch from the prior and take an SGD step for h and ψc ;
3 h(t+1), ψ

(t+1)
c = argmaxh,ψc

∑C
c=1 Ep(c)X

[log pf (y
(c)|x)] given f (t), q(t) as in Eqn. 11 ;

4 Sample minibatch from the approximate posterior and take an SGD step for f and q;
5 f (t+1), q(t+1) = argmaxf∈F ,q∈Q ELBOtotal(yobs) given h(t+1), ψ

(t+1)
c as in Eqn. 12

6 end

3 Inference in Multiple Environments

Empirical bayes (EB) describes a family of procedures in which a Bayesian prior distribution is
treated as an estimated parameter [14]. The standard optimization objective is to maximize the
marginal likelihood of the observed data—an objective that the VAE model also approximately
optimizes [27].

We first introduce some additional notation specific to inference. The data are denoted by yobs =
(Y (c))Cc=1, where y(c) is understood to represent the (possibly many) observations from each envi-
ronment. Let c ∈ {1, . . . , C} denote the observed training environments. Then, the total marginal
likelihood is

log ptotal(yobs) =

C∑
c=1

log p
(c)
Y (y(c)) ≥

C∑
c=1

E
p
(c)
X

[log pf (y
(c)|x)] . (11)

The lower bound on the RHS is hence the main objective to maximize in our model.

3.1 The Total ELBO

The standard ELBO objective for training f in a VAE also approximately maximizes the marginal
likelihood. Let Q be the variational family, and let the encoder or approximate posterior for the
given data, under environment c be denoted q(x|y(c)) ∈ Q. The total ELBO objective is defined to
be

ELBOtotal(yobs) =

C∑
c=1

Eq(x|y(c))[log pf (y(c)|x)]−DKL(q(x|y(c))∥p(c)X (x)) . (12)

It is well known that the summands, which are the ELBOs for each environment, are lower bounds
to the log-marginal likelihoods log p(c)Y (Y (c)). Hence, Equation 12 is also a lower bound to Equation
11, and so maximizing the total ELBO objective also approximately maximizes the total marginal
likelihood.

3.2 Two-Stage Inference

We propose a generic procedure described by Algorithm 1 to obtain the identifiability proved in The-
orem 2.1. As a pre-processing step, we select representative “anchor environments” and embed their
metadata into a basis of natural parameters of a fixed exponential family. This amounts to unsuper-
vised learning of an environment representation c→ ηc in natural parameter space, while enforcing
a basis constraint. Then, we train the decoder f , the diffeomorphism h, and ψc, representing an
arbitrary functional parametrization of the remaining priors. The resulting latent codes are strongly
identified once the anchor embedding is fixed. As this algorithm proceeds, the marginal likelihood
is approximately maximized across the two steps.
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4 Related Works

Our specific model described by Equations 2, 6 and 7 is most closely related to [8], which recently
derived the first identifiable VAE (iVAE) using exponential family priors conditioned on an auxiliary
observed variable u, which can represent a time index or class label. In fact, they applied their iden-
tifiability results to causal discovery as well, though not under the multiple environments framework.
Specifically, their model assumes that each latent dimension follows factorized exponential family
distributions parametrized by their sufficient statistics and natural parameters, written as functions of
u, also parametrized as neural networks. Their theoretical analysis then establishes the identifiability
of all these functional parameters up to some equivalence class.

Our technical contributions generalize the results in [8]. The conditional priors in iVAE can also be
understood as covariate shift in multiple environments, where each environment is indexed by u. In
this sense, the same factors are driving the identifiability results in both models—in fact, we assume
a similar prior diversity condition (linear independence of the natural parameters) and are able to
obtain an analogous main result (Theorem 2.3). Our analysis however is more general, does not
require differentiability of any components, and does not require factorized or purely exponential
family priors. The notion of disentanglement has been defined in various ways in the literature, but
our identifiability is able to handle recent notions of “causal disentanglement”, which generalizes
beyond pure statistical independence [23, 26].

Our main contribution in this paper is to provide an alternative perspective on non-identifiability via
Theorems 1.1 and 2.2, and to characterize the minimal required constraints for strong identifiability
in an additive noise model. We believe that strong identifiability is of independent interest compared
to the equivalence classes derived by [8]. In deep latent variable modeling for example, recent
work associates a notion of latent variable non-identifiability to posterior mode collapse in VAEs,
which is avoided under our modeling assumptions [25]. In causal representation learning, unique
representations and mechanisms can be recovered once the DAG is assumed, which enables robust
reasoning about interventions and causal effects on latent variables.

5 Limitations and Future Work

As a general limitation, we also remark that we have not yet empirically evaluated our algorithm.
Hence, in this section, we will remark on possible limitations brought by our modeling set-up re-
quired for strong identifiability. We will discuss our perceived significance of the possible limita-
tions, and propose ideas to remedy them.

Our set-up makes minimal assumptions, and so we believe the non-identifiability characterizations
in Theorems 1.1 and 2.2 apply quite generally in deep latent variable modeling. In view of this,
strong identifiability cannot be achieved unless at least some environment priors are fixed prior to
training. Of course, this is standard in classical Bayesian inference within the context where both
input and output are observed. However, the input space lacks real-world context in representation
learning, and so subjective priors are difficult to formulate.

Hence, we believe our set-up is most suitable for cases where we are able to sample from a set of
environments that are roughly equidistant, or in which the environment metadata are uninformative.
For example, data that are collected from separate experiments or by different experimenters, but
where the experimental conditions or individual habits are unknown. These environments can simply
be given a canonical basis for a suitable exponential family, and serve as reference points for other
environments. If this is not the case, we may also be able to compute similarity indices between
environments, and then impose this within the hyperparameter vectors, so that environments have
similar prior locations. For now, we leave these design choices for future empirical work.
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A Appendix

The appendix contains a mostly self-contained technical report consisting of proofs and intermediate
results to the main Theorems of the paper. Notation is inherited from those defined in the main text.

A.1 Theoretical Development

Our theoretical contributions resolves this non-identifiability at its source, by analyzing the transfor-
mations such that the latent priors are invariant. Specifically, we show that the indeterminacy in a
VAE can be characterized by a measure automorphism—an invertible transformation such that both
the forward and inverse directions leave the base prior invariant (Theorem A.1.5). Then, we go on to
characterize measure automorphisms, and uncover that under multiple environments, these transfor-
mations must be of a simple form (Theorem A.1.10). Finally, these technical results are combined
to form our main identifiability result.

We will now provide the logic and proofs of our results. Recall that our model, described by Equa-
tions 2, 6 and 7 is parametrized by θ = (f, h), and that the associated marginal densities are P (c)

Y,θ.
We will refer to the measure corresponding to the base prior in each environment as ν(c), noting that
the actual prior is then ν(c) ◦ h−1. To set the stage, denote a pair of decoders and prior transforma-
tions as θa = (fa, ha) and θb = (fb, hb). Measurable functions and sets are referred to as Borel
functions and Borel sets (distinguishing between subsets of Rd or Rm when necessary) respectively.
Recall that the family of decoder functions F are injective and Borel, with common image Y . Re-
call that all inverse functions are defined only with respect to Y . The following lemmas about Borel
functions can be very useful.
Lemma A.1.1 ([7], Corollary 15.2). For f injective and Borel, if B is a Borel set then f(B) is also
a Borel set.
Lemma A.1.2. For any Borel set B in Rd, if fa, fb are Borel then f−1

a (fb(B)) is also a Borel set
in Rd.

Proof. From Lemma A.1.1, fb(B) is Borel. It then follows from the definition of measurable func-
tions that f−1

a (fb(B)) is Borel.

We will now state some preliminary definitions. An invertible transformation A on Rd is said to be
a ν-preserving measure automorphism if

ν ◦A = ν ◦A−1 = ν (1)

as measures. If X is a random variable with distribution ν, it is equivalent to say that

X
d
=A(X)

d
=A−1(X) . (2)

The pushforward σ-algebra of a function f : Rd → Rm on Y is defined as

σ(f) = {C ⊂ Y ; f−1(C) is Borel} . (3)

We will assume that all decoder functions also induce the same σ(f). Note that it can be easily
shown that σ(f) is a σ-algebra, and that f is measurable with respect to it. We now prove a useful
property for f ∈ F .
Lemma A.1.3. Suppose f is Borel and injective, then σ(f) contains only Borel sets.

Proof. Let C ∈ σ(f). By definition, f−1(C) is Borel. Since f is injective, we have f(f−1(C)) =
C. By Lemma A.1.1, C must then be Borel since f is Borel.

This lemma is important, as any measures that are equal on B(Rm) will also be equal on σ(f). From
now on, when measures are referred to as being equivalent, we mean that their values agree for every
Borel set in the applicable space. We now establish that equivalence of marginal distributions implies
the equivalence of image measures that depend only on θa and θb.
Lemma A.1.4. Suppose the characteristic function of gϵ is everywhere non-zero. Let νa, νb be the
prior probability measures corresponding to ha and hb. If P (c)

Y,θa
= P

(c)
Y,θb

, then νa ◦ f−1
a = νb ◦ f−1

b .

10



Proof. Recall that

Y = Z + ϵ , (4)

with Z = f(X). Let ψϵ(t) be the characteristic function of gϵ and ψa, ψb be the characteristic
functions of Z under θa and θb. Suppose P (c)

Y,θa
= P

(c)
Y,θb

, then, their characteristic functions coincide
and so

ψa(t)ψϵ(t) = ψb(t)ψϵ(t)

=⇒ ψa(t) = ψb(t) , (5)

which implies that νa ◦ f−1
a = νb ◦ f−1

b .

The above Lemma reduces the identifiability analysis to the implications of νa ◦ f−1
a = νb ◦ f−1

b .

This definition sets up our first main Theorem, a version of which with ha, hb both the identity is
stated in the main text as Theorem 1.1.

Theorem A.1.5. Suppose that θa and θb are such that νa ◦ f−1
a = νb ◦ f−1

b . Then,

fa(ha(x)) = fb(hb(A(x))) ∀x ∈ Rd , (6)

where A = h−1
b ◦ f−1

b ◦ fa ◦ ha is a ν-preserving measure automorphism on Rd.

Proof. To ease notation, denote the functions fa ◦ ha = ga and fb ◦ hb = gb, understanding that
these functions remain bijective from Rd → Y . We have νa ◦ f−1

a = νb ◦ f−1
b as measures, which

by definition implies that ν ◦ g−1
a = ν ◦ g−1

b . Then, we have for any Borel set,

ν(B) = ν(g−1
a (ga(B))) = ν(g−1

b (ga(B))) . (7)

The first equality is due to the injectivity of ga. The second equality is due to the equality of image
measures. The exact same argument with gb(hb(B)) yields

ν(B) = ν(g−1
b (gb(B))) = ν(g−1

b (gb(B))) . (8)

Notice that this defines two new measures ν(1,2) = ν ◦ g−1
a ◦ gb and ν(2,1) = ν ◦ g−1

b ◦ ga where
ga, gb are understood to be set functions representing their respective images. The above equations
imply that

ν = ν(1,2) = ν(2,1) (9)

as measures on (Rd,B(Rd). Now, notice that the image functions ga, gb are in fact the preimages
(defined on (Y, σ(f))) of their inverses g−1

a and g−1
b by injectivity. Hence, ν(1,2) is in fact also

an image measure, this time of g−1
b ◦ ga : Rd → Rd. In the exact same way, ν(2,1) is the image

measure of g−1
a ◦ gb. The equivalence above hence implies that, viewing X as the random variable

with distribution ν, we have

X
d
= g−1

b (ga(X))
d
= g−1

a (gb(X)) . (10)

Moreover, the functions g−1
b ◦ ga and g−1

a ◦ gb are inverses of each other. Assume the notation
g−1
b (ga(x)) = A(x) and similarly define A−1(x). The above equations hence imply that

X
d
=A(X)

d
=A−1(X) . (11)

Hence, A is a measure automorphism. Clearly, we have ga(x) = gb(g
−1
b (ga(x))) = gb(A(x)).

Unrolling ga and gb yields fa(ha(x)) = fb(hb(A(x))). Note that this equality is true everywhere,
as it is simply a consequence of our definition of A.

Note that this result does not use the multiple environments assumption, it is applicable to VAEs
more generally. To make use of this result, we now move to analyzing the class of measure automor-
phisms.

11



A.1.1 Characterizations of Measure Automorphisms

To make sense of the implications of Theorem A.1.5, we must analyze the class of prior-preserving
measure automorphisms. Since the function classes for f and h are so general, the only way to con-
strain the set of measure automorphisms to a manageable size is to manipulate the prior distribution.
In this section, we uncover significant simplifications by requiring that A is an automorphism for
multiple exponential family measures. Specifically, suppose that two exponential family base priors
are parametrized by its natural parameters, ηa and ηb as in Equation 6.

To prove the next result, we need some intermediate results. Let λ denote the Lebesgue measure.
A measure ν is said to be equivalent to λ if µ << λ and λ << µ where << denotes absolute
continuity.

Lemma A.1.6. Let h ∈ H be smoothly invertible on Rd. If ν is equivalent to λ, then ν ◦h−1 is also
equivalent to λ.

Proof. Note that any measure has a strictly positive density almost everywhere if and only if it is
equivalent to λ ([20], Problem 19.5). Since h has a smooth inverse, its Jacobian is non-zero. By
the change of variables formula, if ν had strictly positive density w.r.t. λ, then so does the image
measure ν ◦ h−1, and hence it is also equivalent to λ.

Lemma A.1.7. Suppose that ν admits a strictly positive density p with respect to the Lebesgue
measure λ. Suppose A is a ν-preserving measure automorphism. Then,

p(A(x))kA(x) = p(x) λ− a.e. , (12)

where k only depends on A and is strictly positive.

Proof. Since A is a ν-preserving measure automorphism and ν is equivalent to λ, we have that for
a Borel set B,

λ(B) = 0 ⇐⇒ ν(B) = 0 ⇐⇒ ν(A(B)) = 0 ⇐⇒ λ(A(B)) , (13)

where the second implication is because A is a measure automorphism, and the first and third im-
plications are because ν is equivalent to λ. Hence, λ ◦ A is equivalent to λ, and so it also has a
strictly positive Radon-Nikodym derivative kA. Then, by the Radon-Nikodym Theorem, we have
for a Borel set B,

ν(B) =

∫
B

ν(dx) =

∫
B

p(x)λ(dx) = ν(A(B)) =

∫
A(B)

ν(dx) =

∫
B

p(A(x))λ(A(dx)) , (14)

by the standard change of variables formula for Lebesgue integration. Now, We have∫
B

p(x)λ(dx) =

∫
B

p(A(x))kA(x)λ(dx) . (15)

Since B was arbitrary, we have

p(A(x))kA(x) = p(x) λ− a.e. , (16)

where kA(x) > 0 λ-a.e..

Corollary A.1.8. For two strictly positive prior densities pa and pb such that A is a measure auto-
morphism, we have

pa
pb

(x) =
pa
pb

(A(x)) λ− a.e. . (17)

Proof. This follows immediately from the fact that kA is strictly positive.

Lemma A.1.9. Suppose A is an automorphism for two exponential family densities parametrized
by ηa, ηb. Suppose that m(x) is strictly positive. Then, we have

(ηa − ηb)
⊤T (x) = (ηa − ηb)

⊤T (A(x)) λ− a.e. . (18)
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Proof. The expression is a direct consequence of Corollary 17 when plugging in the exponential
family densities p(x; ηa) and p(x; ηb). Taking logs on both sides, we have

η⊤a T (x)− η⊤b T (x)−A(ηa) +A(ηb) = η⊤a T (A(x))− η⊤b T (A(x))−A(ηa) +A(ηb)

(ηa − ηb)
⊤T (x) = (ηa − ηb)

⊤T (A(x)) . (19)

We can immediately apply this to obtain a powerful characterization of automorphisms of a carefully
constructed set of base prior distributions.
Proposition A.1.10. Suppose A is an automorphism for K + 1 exponential family measures
parametrized by ηc, c ∈ I , where

1. m(x), shared for each measure, is strictly positive.

2. K of the natural parameter vectors are linearly independent, where K is the dimension of
the base natural parameters and sufficient statistic.

Then, T (A(x)) = T (x) almost everywhere, where T is the K-dimensional sufficient statistic. If T
is injective, then A is the identity almost everywhere.

Proof. For any pair (i, j) such that i ̸= j, Equation 18 holds. Fix j to be the natural parameter that
is not linearly independent. Then, {ηi − ηj}i ̸=j forms a basis. With some algebra, we may deduce
that

T (x)⊤(ηi − ηj) = T (A(x))⊤(ηi − ηj)

=⇒ (T (x)− T (A(x)))⊤(ηi − ηj) = 0 (i, j) ∈ P . (20)

Since {ηi − ηj}(i,j)∈P forms a basis, the representation of (T (x) − T (A(x))) with respect to this
basis and Equation 20 immediately implies ∥T (x) − T (A(x))∥2 = 0. Hence, T (x) = T (A(x))
almost everywhere. If T is injective, it follows immediately that A(x) = x almost everywhere.

In words, this result says that, if A is an automorphism for a diverse enough group of exponential
family measures, then it is perceived as the identity function under the shared sufficient statistic.
Furthermore, the Normal distribution has an injective sufficient statistic, and so the Theorem states
that only the identity can preserve such a basis of Normal distributions.

A.1.2 Identifiability Analysis

Combining Theorems A.1.5 and A.1.10, we are now able to prove Theorem 2.1.

Proof of Theorem 2.1. Let the base prior for each environment be denoted ν(c), and the correspond-
ing priors by applying ha and hb by ν(c)a , ν

(c)
b . By Lemma A.1.4, it is sufficient to study the implica-

tion of

ν(c)a ◦ f−1
a = ν

(c)
b ◦ f−1

b .

By Theorem A.1.5, we have

fa(ha(x)) = fb(hb(A(x))) ,

where A is a ν(c)-preserving measure automorphism on Rd for each c. In particular, it is an auto-
morphism for the subset of environments for which {ηi−ηj}i ̸=j forms a basis of RK . Recall that A
is uniquely determined by fa, fb, ha, hb, and so it is the same across environments. Now, from the
identity A = h−1

b ◦ f−1
b ◦ fa ◦ ha, we have h−1

b (f−1
b (y)) = A(h−1

a (f−1
a (y))) for any y ∈ Y . For

almost every h−1
a (f−1

a (y)) and h−1
b (f−1

b (y)), we have, from Theorem A.1.10,

T (h−1
b (f−1

b (y))) = T (A(h−1
a (f−1

a (y))))

= T (h−1
a (f−1

a (y))) . (21)

If T is injective in at least one dimension, then h−1
a (f−1

a (y)) = h−1
b (f−1

b (y)). Since fa, fb, ha, hb
are all injective, this implies fa(ha(x)) = fb(hb(x)) almost everywhere. This concludes the proof.
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A.2 Alternative Result for Varying Priors, and Connection to iVAE

In this section we present a modified theory that allows for varying (i.e., concurrently optimized)
prior distributions. Our results here essentially recover Theorem 1 in [8]. Consider the following
modification of Theorem A.1.5, where θi = (νi, fi) and νi may be arbitrarily different.

Theorem A.2.1. Suppose that θa and θb are such that νa ◦ f−1
a = νb ◦ f−1

b . Then,

fa(x) = fb(A(x)) ∀x ∈ Rd , (22)

where A = f−1
b ◦ fa is a Borel bijection on Rd such that νa ◦A−1 = νb and νa = νb ◦A.

Proof. First note that by Lemma A.1.2, A is clearly Borel. By the injectivity of fa and fb, A is a
bijection. Working on the space (Y, σ(f)), f−1

b is defined and fb is understood to be its preimage.
Then for any Borel set B in Rd, we have

νa(A
−1(B)) = νa(f

−1
a (fb(B))) = νb(f

−1
b (fb(B))) = νb(B) , (23)

where the last equality is due to the injectivity of fb. This shows that νa ◦ A−1 = νb, to show the
other direction is simply to swap the roles of the indices 1 and 2.

We will call such an A an invertible transport map. This Theorem essentially states that if two
pushforwards are equal in the data space, then there exists a Borel automorphism in the latent space
such that one arbitrary prior measure may be transported to another on (Rd,B(Rd)), and that the
process is invertible. Now, we place some structure on these priors to similarly restate Lemma A.1.7.
Lemma A.2.2. Suppose that νa and νb admit strictly positive densities pa and pb with respect to the
Lebesgue measure λ. Suppose A is an invertible transport map. Then,

pb(A(x))kA(x) = pa(x) λ− a.e. , (24)

where k only depends on A and is strictly positive.

Proof. Since νa, νb are equivalent to λ, we have that for a Borel set B,

λ(B) = 0 ⇐⇒ νa(B) = 0 ⇐⇒ νb(A(B)) = 0 ⇐⇒ λ(A(B)) , (25)

where the second implication is due to the hypothesis that A is an invertible transport map. Hence,
λ ◦ A is equivalent to λ, and so it also has a strictly positive Radon-Nikodym derivative kA. Then,
by the Radon-Nikodym Theorem, we have for a Borel set B,

νa(B) =

∫
B

νa(dx) =

∫
B

pa(x)λ(dx) = νb(A(B)) =

∫
A(B)

νb(dx) =

∫
B

pb(A(x))λ(A(dx)) ,

(26)

by the standard change of variables formula for Lebesgue integration. Now, We have∫
B

pa(x)λ(dx) =

∫
B

pb(A(x))kA(x)λ(dx) . (27)

Since B was arbitrary, we have

pb(A(x))kA(x) = pa(x) λ− a.e. , (28)

where kA(x) > 0 λ-a.e..

We also obtain a similar corollary:
Corollary A.2.3. For two pairs of strictly positive densities (pa1 , p

a
2) and (pb1, p

b
2), such that A is an

invertible transport map simultaneously for pa1 to pa2 and pb1 to pb2, we have

p
(a)
1

p
(a)
2

(x) =
p
(b)
1

p
(b)
2

(A(x)) λ− a.e. . (29)

If we assume exponential densities, we obtain the following version of Proposition A.1.10.
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Proposition A.2.4. Suppose A is an invertible transport map simultaneously between two sets of
K + 1 exponential family measures with strictly positive densities (νa0 , . . . , ν

a
k ) to (νb0, . . . , ν

b
k),

where

1. m(a)(x),m(b)(x) is fixed for each a, b and are strictly positive.

2. The same K natural parameters are linearly independent for both a and b, where K is the
dimension of the base natural parameters and sufficient statistic.

Then,

Tb(A(x)) = L⊤Ta(x) + d λ− a.e. , (30)

where L is an invertible matrix and Ta, Tb are the sufficient statistics (shared for allK+1 measures).

Proof. Fix j to be the natural parameter index that is not linearly independent. From Corollary A.2.3
and taking logarithms, we have

(η
(a)
i )⊤Ta(x)− a(η

(a)
i )− ((η

(a)
j )⊤Ta(x)− a(η

(a)
j ))

= (η
(b)
i )⊤Tb(A(x))− a(η

(b)
i )− ((η

(b)
j )⊤Tb(A(x))− a(η

(a)
j )) , (31)

which simplifies to

(η
(a)
i − η

(a)
j )⊤Ta(x)− c

(a)
i = (η

(b)
i − η

(b)
j )⊤Tb(A(x))− c

(b)
i (i, j) ∈ P λ− a.e. . (32)

Written in matrix form, we have
η
(a)
i1 − η

(a)
j1

...
η
(a)
iK − η

(a)
jK


⊤

Ta(x) =


η
(b)
i1 − η

(b)
j1

...
η
(b)
iK − η

(b)
jK


⊤

Tb(A(x)) + c λ− a.e. , (33)

where c is the vector of differences c(a)i − c
(b)
i . Following [8], we call these two matrices La and

Lb, noting that they are invertible since their rows are linearly independent by assumption. Then,
we obtain

L⊤
a Ta(x)− L⊤

b Tb(A(x)) = c (34)

=⇒ Tb(A(x)) = (L−1
b La)

⊤Ta(x)− (L−1
b La)

⊤c (35)

=⇒ Tb(A(x)) = L⊤Ta(x) + d λ− a.e , (36)

where L = L−1
b La is invertible and d = −L⊤c.

A.2.1 Identifiability

Re-stating and proving Theorem 2.1, our main identifiability result, is a simple application of the
original proof technique. Let us describe the modified model for clarity. Recall that we have data
arising from C environments. For each environment, we assume that the data arises independently:

for c ∈ {I}

X ∼ p
(c)
X

ϵ ∼ gϵ
Y = f(X) + ϵ , (37)

where gϵ is the fixed noise distribution denoted by its density, and f ∈ F is the shared decoder.
We further assume that the priors are each estimated by an exponential family distribution, differing
between environments by its natural parameter,

p
(c)
X (x) = m(x) exp(η⊤c T (x)− a(ηc)) . (38)

Note that a is determined by m, ηc, and T . Our model (i.e., the marginals of Y ) is hence
parametrized by θ = (f,m, T, (ηc)

C
c=1). We refer to the marginal distributions of Y as P (c)

Y,θ.
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Theorem A.2.5 (Restating Theorem 2.3). In the model with a subset of K + 1 environments with
priors parametrized by θa = (fa,ma, Ta, {η(a)c }c∈I), θb = (fb,mb, Tb, {η(b)c }c∈I), suppose that gϵ
has a non-zero characteristic function and assume the following conditions on the priors:

1. m(a)(x),m(b)(x) are strictly positive.

2. The sameK base priors for θa and θb have linearly independent natural parameter vectors,
where K is the dimension of the base natural parameters and sufficient statistic.

Then if P (c)
Y,θa

= P
(c)
Y,θb

for each observed c, we have

Tb(A(x)) = L⊤Ta(x) + d λ− a.e. on Rd , (39)

where A(x) = f−1
b (fa(x)), L is an invertible K ×K matrix and d is some K-dimensional vector.

The proof of this Theorem is a direct consequence of Theorem A.2.1 and Proposition A.2.4, and is
identical to the proof of Theorem 2.1.
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